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The Internet of Things and People



Big Data for Scientific Research

Nature - Big Data
Sept. 3, 2008, Vol. 455, Issue 7209

Science - Dealing with Data
Feb. 11, 2011, Vol. 331, Issue 6018



Our Data – Aerosol Science

Understand the processes that 
control formation, 
physicochemical properties and 
transformations of particles

Acquired by a state-of-the-art 
single particle mass 
spectrometer (SPLAT II) often 
deployed in an aircraft 



Our Data – Aerosol Science

SPLAT II can acquire up to 100 particles per second 
at sizes between 50-3,000 nm at a precision of 1 nm

▪ Creates a 450-D mass spectrum for each particle

Overall Goal: 
Build the hierarchical 
structure of particles that 
can be used in 
automated classification 
of new particle 
acquisitions

SpectraMiner



Our Data – Aerosol Science

Data Scale: 
▪ 450 dimensions
▪ Typically, several millions of points

Goal:
▪ Overall: hierarchical (tree) structure
▪ In this talk: parallel clustering algorithms for

➢ Redundancy elimination
➢ Learning the leaf level of the tree



Incremental k-Means – Sequential

The old CPU-based solution

Input: data points P, distance threshold t
Output: clusters C
C = empty set
for each unclustered point p in P
if C is empty then
Make p a new cluster center and add it into C

else
p = next unclustered point
Find the cluster center c in C closest to p
let d = distance(c, p)
if d < t then Cluster p into c
elseMake p a new cluster center added to C
end if

end if
end for
return C
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Incremental k-Means – Parallel

NEW GPU-based solution

Input: data points P, distance threshold t, batch size b, max
iteration M

Output: clusters C
C = empty set
while number of un-clustered points in P > 0
Run Alg. 1 until a number of b clusters B emerge
Iteration 𝑖 = 0
while 𝑖 < 𝑀 and B is not stable
in parallel:
for each unclustered point 𝑝𝑖
Find the center 𝑏𝑖 in B closest to 𝑝𝑖
if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑖 , 𝑝𝑖 < 𝑡 then 𝑐𝑖 = 𝑏𝑖
else 𝑐𝑖 = null

end for
on CPU: Assign 𝑝𝑖 to 𝑏𝑖 if 𝑐𝑖 is not null
in parallel: update centers of B

end while
Add B to C

end while
return C



Incremental k-Means – Parallel

GPU Thread Block: 32 × 32 threads

If we set the batch size b = 96:
▪ A group of 96/32 = 3 cluster centers is mapped to a column of the block
▪ Number of thread block launched: N/32



Dimension Reduction and the Threshold t

Dimension standard deviations 
by parallel reduction



Comments and Observations

Algorithm merges the incremental k-means 
algorithm with a parallel implementation (k=C)
Design choices:

▪ C=96 good balance between CPU and GPU utilization
▪ With C>96 algorithm becomes CPU-bound
▪ With C<96 the GPU would be underutilized
▪ A multiple of 32 avoids divergent warps on the GPU
▪ Max iterations = 5 worked best 

Advantages of the new scheme:
▪ Second pass of previous scheme no longer needed



GPU Implementation

Platform
▪ 1-4 Tesla K20 GPUs
▪ Installed in a remote ‘cloud’ server

Parallelism
▪ Launch N/32 thread blocks of size 32 x 32 each
▪ Each thread compares a point with 3 cluster centers
▪ Make use of shared memory to avoid non-coalesced 

memory accesses



Quality Measures

Cluster quality measure: Davies-Bouldin (DB) index

𝐷𝐵 =
1
𝑛෍
𝑖=1

𝑛

max(
𝜎𝑖 + 𝜎𝑗
𝑀𝑖𝑗

)

• 𝜎𝑖 - intra-cluster distance
• 𝑀𝑖𝑗 - inter-cluster distance
• The lower the DB, the better the quality



Acceleration by Sub-Thresholding

➢ Sub-thresholding: 
Points with small distance to the center are settled 
and will not be re-visited in inner iterations

➢ This also somehow improves the DB index 
Data Size Sequential Parallel ST: 0.3 ST: 0.2 ST: 0.15

10k 0.527 0.539 0.540 0.537 0.529

50k 0.546 0.590 0.548 0.554 0.539

100k 0.550 0.584 0.600 0.570 0.544

200k 0.564 0.587 0.640 0.593 0.564



Results – Different Settings

About 33x speedup



Results – Multi-GPU

4-GPU has about 100x speedup over sequential 



In-Situ Visual Feedback (1)

Visualize cluster centers as summary snapshots
▪ Glimmer MDS algorithm
▪ Intuitive 2D layout

Color map:
▪ Small clusters map to mostly white
▪ Large clusters map to saturated blue

We find that early visualizations are already quite 
revealing

▪ This is shown by cluster size histogram
▪ Cluster size of M>10 is considered significant



In-Situ Visual Feedback (2)

79/96 998/3360 2004/13920



In-Situ Visual Feedback (3)

3001/52800 4002/165984 4207/336994



Conclusions and Future Work

Current approach quite promising
▪ Good speedup and results
▪ In-situ visualization of data reduction process with 

early valuable feedback

Future work
▪ More efficient data storage facilities
▪ Load-balancing point for multi-GPU
▪ Accelerate the hierarchy building
▪ A comprehensive VA system



Final Slide

Thanks for attending!
And thanks to NSF and DOE for funding

Any questions?


